m at h . A G ] 1 7 Ju l 2 00 9 GROUP SCHEMES OF PERIOD p > 2
نویسنده
چکیده
For a prime number p > 2, we give a direct proof of Breuil’s classification of finite flat group schemes killed by p over the valuation ring of a p-adic field with perfect residue field. As application we establish a correspondence between finite flat group schemes and Faltings’s strict modules which respects associated Galois modules via the Fontaine-Wintenberger field-of-norms functor
منابع مشابه
ar X iv : m at h / 04 09 56 9 v 4 [ m at h . A G ] 1 7 Ju l 2 00 6 INTERMEDIATE MODULI SPACES OF STABLE MAPS
We describe the Chow ring with rational coefficients of M0,1(P , d) as the subring of invariants of a ring B(M0,1(P , d);Q), relative to the action of the group of symmetries Sd. We compute B(M0,1(P , d);Q) by following a sequence of intermediate spaces for M0,1(P , d).
متن کاملar X iv : 0 70 7 . 43 00 v 1 [ m at h . G T ] 2 9 Ju l 2 00 7 VOLUME AND HOMOLOGY OF ONE - CUSPED HYPERBOLIC 3 - MANIFOLDS
Let M be a complete, finite-volume, orientable hyperbolic manifold having exactly one cusp. If we assume that π1(M) has no subgroup isomorphic to a genus-2 surface group, and that either (a) dimZp H1(M ;Zp) ≥ 5 for some prime p, or (b) dimZ2 H1(M ;Z2) ≥ 4, and the subspace of H(M ;Z2) spanned by the image of the cup product H (M ;Z2) × H(M ;Z2) → H(M ;Z2) has dimension at most 1, then volM > 5....
متن کاملar X iv : 0 70 7 . 40 46 v 1 [ m at h . A G ] 2 7 Ju l 2 00 7 CLIFFORD ’ S THEOREM FOR COHERENT SYSTEMS
Let C be an algebraic curve of genus g ≥ 2. We prove an analogue of Clifford’s theorem for coherent systems on C and some refinements using results of Re and Mercat.
متن کاملar X iv : m at h / 02 07 25 7 v 1 [ m at h . A G ] 2 7 Ju l 2 00 2 RATIONAL CURVES ON HYPERSURFACES OF LOW DEGREE , II
This is a continuation of [7] in which we proved irreducibility of spaces of rational curves on a general hypersurface X d ⊂ P n of degree d < n+1 2. In this paper, we prove that if d 2 + d + 2 ≤ n and if d ≥ 3, then the spaces of rational curves are themselves rationally connected.
متن کاملar X iv : 0 90 7 . 20 23 v 1 [ m at h - ph ] 1 2 Ju l 2 00 9 Menelaus relation and Fay ’ s trisecant formula are associativity equations
It is shown that the celebrated Menelaus relation and Fay's trisecant formula similar to the WDVV equation are associativity conditions for structure constants of certain three-dimensional algebra.
متن کامل